Strong divergence for system approximations
نویسندگان
چکیده
In this paper we analyze the approximation of stable linear time-invariant systems, like the Hilbert transform, by sampling series for bandlimited functions in the Paley–Wiener space PW π . It is known that there exist systems and functions such that the approximation process is weakly divergent, i.e., divergent for certain subsequences. Here we strengthen this result by proving strong divergence, i.e., divergence for all subsequences. Further, in case of divergence, we give the divergence speed. We consider sampling at Nyquist rate as well as oversampling with adaptive choice of the kernel. Finally, connections between strong divergence and the Banach–Steinhaus theorem, which is not powerful enough to prove strong divergence, are discussed.
منابع مشابه
Semidiscrete Finite Element Approximations of a Linear Fluid-Structure Interaction Problem
Semidiscrete finite element approximations of a linear fluid-structure interaction problem are studied. First, results concerning a divergence-free weak formulation of the interaction problem are reviewed. Next, semidiscrete finite element approximations are defined, and the existence of finite element solutions is proved with the help of an auxiliary, discretely divergence-free formulation. A ...
متن کاملOptimization of tangential fields arrangement in the breast cancer 3D conformal radiation therapy
Introduction: The incidence of breast cancer increases with the rate of 1-2% at the world. Radiation therapy is one of the available choices for breast cancer treatment. The single isocentre half-beam block technique is considered as a standard technique to avoid hot and cold spots within the PTV. The major advantage of half beam technique is that the both contralateral breast...
متن کاملAsymptotic Approximations of the Solution for a Traveling String under Boundary Damping
Transversal vibrations of an axially moving string under boundary damping are investigated. Mathematically, it represents a homogenous linear partial differential equation subject to nonhomogeneous boundary conditions. The string is moving with a relatively (low) constant speed, which is considered to be positive. The string is kept fixed at the first end, while the other end is tied with the ...
متن کاملGaussian Approximations of Small Noise Diffusions in Kullback-leibler Divergence
Abstract. We study Gaussian approximations to the distribution of a diffusion. The approximations are easy to compute: they are defined by two simple ordinary differential equations for the mean and the covariance. Time correlations can also be computed via solution of a linear stochastic differential equation. We show, using the Kullback-Leibler divergence, that the approximations are accurate...
متن کاملFast Communication Gaussian Approximations of Small Noise Diffusions in Kullback–leibler Divergence∗
We study Gaussian approximations to the distribution of a diffusion. The approximations are easy to compute: they are defined by two simple ordinary differential equations for the mean and the covariance. Time correlations can also be computed via solution of a linear stochastic differential equation. We show, using the Kullback–Leibler divergence, that the approximations are accurate in the sm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Probl. Inf. Transm.
دوره 51 شماره
صفحات -
تاریخ انتشار 2015